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Abstract

Cross-modal conflicts in maritime navigation—where a vessel’s
verbal communication contradicts its physical maneuvers (e.g.,
promising to give way while maintaining speed) pose severe risks
to safety. Current autonomous systems often process sensor data
and linguistic inputs in isolation, failing to detect such discrepan-
cies. We present a Multimodal Agentic Framework that serves as a
“Watchful Copilot,” using Retrieval-Augmented Generation (RAG)
to cross-reference navigational dialogue with real-time kinematic
data. To manage uncertainty, a Risk-Prioritized Interface employs
progressive disclosure, escalating from a “Green” (Verified) state
to a “Yellow” (Ambiguous) state, where the agent visualizes sup-
porting evidence and requests human supervision for clarification.
Preliminary validation in a 2D simulation benchmark (N = 13) pro-
vides initial evidence that this human-in-the-loop workflow may
support reduced cognitive load and appropriate trust calibration in
high-ambiguity scenarios, warranting further investigation.
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1 Introduction

As the maritime industry transitions toward Maritime Autonomous
Surface Ships (MASS), the human operator’s role is fundamentally
shifting from manual execution to supervisory control [12][14]. Al-
though automation now performs much of the trajectory planning,
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Figure 1: Human-Agent Collaborative Maritime Copilot Framework.

maritime safety still depends heavily on nuanced social coordina-
tion and intent sharing between vessels [6][8][13]. Statistics from
the IMO (International Maritime Organization) indicate that most
maritime accidents are caused by human error and incorrect in-
terpretation of intentions during ship-to-ship negotiations [7]. In
high-intensity maritime environments, operators encounter what
we call “Cross-modal Conflicts”, situations where verbal intent
communicated via VHF contradicts kinematic observations from
sensors. Unlike traditional multimodal fusion approaches that as-
sume modality complementarity, our framework explicitly models
the possibility of conflict, for instance, when a target vessel verbally
declares a ’turn to port’ while radar continuously tracks a steady
course. These discrepancies can arise from misunderstanding, de-
ception, or equipment failure, each demanding distinct operator
responses. Resolving them typically requires manually integrating
multiple data sources [4] [17], which can lead to cognitive over-
load and reduced situational awareness [10]. Resolving these con-
flicts is challenging because nautical communication is inherently
ambiguous, creating potentially catastrophic risks in high-stakes
situations [5] [16]. Context-dependent expressions often lack pre-
cise kinematic information, making reliance on Large Language
Models (LLMs) alone insufficient for accurately inferring vessel
intent [19] [9]. Moreover, current autonomous systems frequently
treat sensing and communication separately, neglecting the crucial
human component in mixed-traffic environments [2]. This opacity
in system design where the agent acts as a “black box” without
verifying verbal agreements, significantly undermines the efficacy
of Human-Agent Teaming (HAT) and operator trust [18] [15].
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In this paper, we propose a Multimodal Agentic Framework de-

signed to support human decision-making as a "Watchful Copilot”.

Unlike passive monitoring systems, our agent employs a RAG mech-
anism to actively cross-verify transcribed verbal intents against dy-
namic behavioral signals. Our core contribution is a Risk-Prioritized
Interface that manages uncertainty through progressive disclosure:
the system dynamically adjusts information granularity—escalat-
ing from a "Green” (Verified) state to a "Yellow” (Ambiguous) state,
to facilitate multi-turn clarification under human supervision. We
also introduce deceptive utterances to simulate challenging sce-
narios [3]. Preliminary results indicate that this approach helps
align sensor data with linguistic intent, promoting calibrated trust
in high-stakes maritime collaboration.

2 Methodology

The conceptual architecture of our Multimodal Agentic Framework
is depicted in Figure 1. To address the challenge of cross-modal
conflict, the system operates on a closed-loop workflow that verifies
information through three interconnected stages: Simulated Per-
ception, Agentic Reasoning Core, and a Human-Agent Interaction
Loop.

2.1 Simulated Perception and Knowledge
Grounding

To isolate the effects of linguistic-behavioral discrepancies from
environmental noise, we implement a Simulated Perception Layer
in our 2D benchmark. Rather than processing raw visual inputs, the
agent uses high-fidelity Kinematic State Vectors (position, velocity,
heading) that represent the vessel’s physical state. This information
is synchronized with Navigational Communication (transcribed
VHEF text). Reasoning relies on two complementary knowledge
sources: a Dynamic Database of real-time objective data (Automatic
Identification System (AIS) readings, relative geometry) and a static
Maritime Knowledge Graph encoding regulatory constraints.

2.2 Agentic Reasoning Core via RAG

The central processing unit employs a RAG mechanism to bridge
the gap between semantic intent and physical action. Specifically,
the pipeline operates in three stages:

(i) Intent Extraction: An LLM (Google Gemini 3 pro) parser pro-
cesses transcribed VHF dialogue to extract structured navigational
intent (e.g., action: alter_course, direction: starboard).

(ii) Knowledge Retrieval: The extracted intent triggers retrieval
from two knowledge bases: (a) a Dynamic Database containing
real-time objective facts fetched via APIs, including kinematic data
of ships(AIS/visual estimates) and navigational status; and (b) Static
Maritime Knowledge Graph: Contains encoded regulatory con-
straints, primarily the Convention on the International Regulations
for Preventing Collisions at Sea (COLREGs) [1] and standard ma-
neuver patterns.

(iii) Grounded Generation: The LLM does not directly compute
trajectories. Instead, it extracts estimated structured parameters
(intended action, direction, magnitude) from the text, which are
then passed to a deterministic kinematic model that generates the
Ghost Trajectory using standard equations of motion. The LLM
serves as a semantic parser, not a trajectory planner.
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A Compliance & Consistency Check module compares this Ghost
Trajectory against the actual vessel vector. An Ambiguity Quantifier
calculates S, € [0, 1] as: Sypp = 0.5 X Vegpantic + 0-5 X Diinematic
(equal weighting was selected as a neutral prior for this formative
validation phase)

where Vigmanic captures linguistic vagueness, reflecting the ab-
sence of precise action verbs or parameters in navigational dialogue
and Dyjyemaric measures kinematic divergence, the geometric dis-
crepancy between the predicted Ghost Trajectory and the vessel’s
real-time motion. State thresholds are defined as Green (S,,,;;, < 0.3),
Yellow (0.3 — 0.7), and Red (> 0.7). We let V0010 be quantified
via a LLM employing a few-shot prompting strategy, calibrated
to output a scalar score € [0, 1] based on the presence of specific
actionable parameters such as action verb, value, reference) in the
transcribed VHF message. We also let Dyjpemaric b€ computed as a
time-averaged, normalized divergence between the observed vessel
state vector 8., and the predicted ghost state vector Sy, over
a sliding window T. It is defined as the weighted sum of normalized
heading divergence (sp) and speed divergence (s,):

|AG

1 . .
Drinematic = N Z[WO ’ mm(ei’ D+w,: mln(v
T max max

A )

where N is the number of time steps in the sliding window T, Af,
and Av; are instantaneous discrepancies, and 6, and vy, are
empirically defined thresholds representing significant deviation.

2.3 Operational Workflow and Risk-Prioritized
Interface

The workflow starts with continuous kinematic monitoring. When
a potential collision risk is detected, the agent activates its Tiered
Response Strategy, employing a Progressive Disclosure mech-
anism to manage operator trust and reduce cognitive load:

+ Green (Verified): When the verbal intent aligns with physi-
cal maneuvers and complies with COLREGs (low S,,;), the
system logs the event as "Clear” without interrupting the
operator.

Yellow (Ambiguous - Supervisor-in-the-Loop): If S, exceeds
a moderate threshold (e.g., vague language like I will keep
clear” or minor trajectory deviation), the interface highlights
the target in yellow. Crucially, the agent visualizes the rea-
soning rationale (citing specific COLREGs as basis) and
requests human authorization to initiate a specific clarifica-
tion query.

Red (Conflicting): In cases of critical cross-modal conflict
(e.g., a verbal “turn port” contradicted by a visual straight-
line vector) the agent escalates to a red alert and prepares
an emergency query to resolve the immediate danger.

3 Experimental Design

Given that the proposed architecture is a highly coupled system
integrating multi-turn human interaction, multimodal information
processing, and RAG, it is important to verify system completeness
and evaluate the interaction design prior to engaging professional
human evaluators. A significant challenge in experimental design
lies in the inherent ambiguity of COLREGs [1]. Concepts such as
”safe distance” lack precise quantitative definitions, and scenario



Active Maritime Copilot for Ambiguity and Risk-Driven Decisions

8% Maritime Chart - OVERTAKE

r

® Alert:1 @ Clear: 1 @ Uncertain: 0

q

HRI Companion ’26, March 16-19, 2026, Edinburgh, Scotland, UK

& Nordic Wave Alert & OPERATOR CONSOLE © Clear 1@ Agent Decision Support ACTIVE

nm

© BASIC INFO

@ Recommended Actions:

1. HOLD OVERTAKING - maintain current position
Ba: - Colision avoidance

Ship ID: SHIPOOT

Name: Nordic Wave

Dynamic Info: Target intent

Distance: n clarification via VHF CH 16

148 nm

%0°

Rule 34 - Comm ol

rease monitoring distance to > 2.5 nm
(0.08,1.47) nm Basis:

Speed:

41 knots

Position: COLREGS Rule 7 - Maintain safe distance when collision risk exists
4. Prepare evasive maneuvers as contingency

Basis: COLREGs Rule 17(a)i) - Stand-c

ction if needed

Information
© Ciear m

&l6 COLREGs Reference Database

“I" VHF COMMUNICATION
Call Sign: NORDIC-WAVE
Channel: VHF 16

MMSI: 219000001

Last: 1401:09

2 VHF COMMUNICATION LOG  (OWN SHIP — TARGET SHIP)

= [14:0022] Own Ship:
namic Information Database Access
S Data | VHF Communication Analysis | Behavior Match

NORDIC-WAVE, this is Own Ship. Request confirmation of your course
and speed for safe overtaking. Over.

& [14:00:24] NORDIC-WAVE:
NORDIC-WAVE to Own Ship, our intentions are unclear at this moment,
monitoring situation, Over @ COLREGs Rule 13: Overtaking [Main Basis]

taking any other shall keep out of the way of the

= [14:01:00] Own Ship:

NORDIC-WAVE. Own Ship executing recommended maneuver. Overtaking
on starboard side. Over.

Definition: A vessel is considered to be overtaking when coming up with
another vessel from a direction more than 22.5° abaft her beam.
at a safe distance and
& [14:01:02] NORDIC-WAVE:
NORDIC-WAVE roger. Proceeding as planned. Over.

= [14:01:09] Own Ship:
Roger, NORDIC-WAVE. Information confirmed clear. Proceeding with safe
overtaking. Over.

COLREGs Rule 7: Risk of Collision

Determine risk of collision using all availa

Figure 2: Risk-Prioritized Interface: (left) Maritime chart with vessel positions; (middle) Real-time status and VHF log; (top-right) RAG
evidence panel showing retrieved COLREGs and kinematic data; (bottom-right) Operator authorization controls.

classification is often equivocal; for instance, a Target Ship (TS)
approaching from the port quarter could be interpreted as either
a “crossing” or an “overtaking” situation. To rigorously assess the
agent’s robustness in handling such multimodal ambiguity, we
developed a simulation benchmark library comprising selected typ-
ical scenarios. This experiment employs a 2D planar simulation
paradigm specifically to isolate environmental noise (e.g., wave dy-
namics and lighting conditions), thereby focusing the evaluation on
the agent’s capability to cross-verify physical spatial relationships
against semantic communication content (Figure 2).

Each experimental scenario is defined along two dimensions.
Physical Situation specifies the encounter geometry and kinematic
parameters based on COLREGs, while Communication Congruency
measures how well the preset VHF communication aligns with the
actual physical situation, serving as the key independent variable.

%

: : :

(a) Crossing (b) Head-on (c) Overtaking
Figure 3: COLREGs-based classification of encounter situations.

(Star symbol indicates the predicted point of collision.)

3.1 Physical Base Layer

We designed a set of physical scenarios covering the main COLREGs
situations (Figure 3):

» Head-on Situation (1 scenario): Two vessels on reciprocal
courses, creating a direct collision risk.

« Crossing Situations (2 scenarios): One case with the target
vessel approaching from the port side (own ship is the stand-
on vessel) and one from the starboard side (own ship is the
give-way vessel).

« Overtaking Situations (2 scenarios): One case where the own
ship overtakes the target vessel and one where the target
vessel overtakes the own ship.

Note: The number in parentheses indicates the number of distinct
scenario instances created for each encounter type.

3.2 Communication & Congruency Layer

To evaluate the agent’s iterative clarification mechanism, we as-
signed specific VHF communication presets to each physical sce-
nario, defining three Ground Truth Conditions.

Condition A: Consistent/Clear (Expected State: Green) rep-
resents cases where communication is unambiguous and perfectly
aligned with physical movements. For instance, in a high-risk star-
board crossing where the target ship is faster and should give way,
the visual feed shows the target vessel clearly turning starboard,
accompanied by the preset message, “Own ship is altering course to
starboard to pass astern of you”” In such cases, the agent identifies
low ambiguity and triggers no intervention.
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Condition B: Vague/Ambiguous (Expected State: Yellow)
captures situations where potential physical risk exists but com-
munication is non-specific and lacks actionable parameters. For
example, in a port-side crossing with similar vessel speeds, the
preset message, “I see you; will keep clear,” does not specify how
the target ship will maneuver. Here, the agent detects semantic
ambiguity and triggers a supervisory query.

Condition C: Conflicting/Discrepant (Expected State: Red)
involves scenarios where verbal statements directly contradict sen-
sor observations. In a head-on encounter with collision risk, the
visual feed may show the target vessel maintaining a straight course
despite a message stating, “We are altering course to starboard now
for port-to-port passing”” In such cases, the agent identifies a critical
cross-modal conflict and initiates an autonomous emergency query.

4 Results

We recruited N = 13 participants (8 HRI researchers and 5 engi-
neering graduate students) to evaluate the 2D simulation prototype
using a Think-Aloud protocol [11]. Participants assumed the role
of Officer of the Watch (OOW), tasked with monitoring evolving
traffic scenarios and authorizing agent interventions. We collected
decision response times, behavioral logs, and qualitative feedback
in Figure 4.
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Figure 4: User experience comparison

Validation of Risk-Prioritized Disclosure: The quantitative re-
sults show high median scores (> 6) for Interface Color Status (Q4)
across both groups, validating that the Red-Yellow-Green transi-
tion effectively communicated risk levels. Behavioral observations
indicated that the interface mitigated the "startle effect” often seen
in high-stakes alarms. Participants reported their immediate reac-
tion was to "read the warning and see the suggestion” rather than
panic, because the agent provided actionable context. However, the
variance in initial reactions highlights a reliance solely on visual
cues, with participants suggesting that “adding sound may make it
more alerting” for immediate awareness.

Trust Calibration via RAG Evidence: A critical success of the
framework is the establishment of trust through explainability. The
"With Background” group showed remarkably high consensus on
RAG Evidence (Q8), with the interquartile range collapsing around
a score of 6. This indicates that HRI experts unanimously agreed
on the value of structured dynamic/static evidence. We recorded
an average decision response time of 4.5 seconds (SD = 1.2) in the
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Yellow” state. Behavioral observations confirmed this latency was
not due to confusion, but to active cognitive verification: partic-
ipants utilized this window to cross-reference the RAG evidence
against the map. This deliberation fostered trust, as noted by one
participant: “If it just turned green automatically, I might doubt it.
But since it showed me the ambiguity and asked for my approval, I
trust the final result much more”

Interface Friction and Future Iteration: While the workflow logic
was validated, specific bottlenecks explain the wider variance ob-
served in expert ratings for Layout (Q5) and Control (Q6). Partic-
ipants noted that parsing textual COLREGs under pressure was
cognitively demanding, suggesting that “the font for important info
could be larger” and VHF logs should be “inversed” to show re-
cent messages first. Most critically, the confusion regarding manual
input suggests a need to transition from text-based to graphical
explainability. Future iterations will overlay a "Ghost Trajectory”
directly onto the map to facilitate rapid visual validation of the
agent’s proposed maneuvers.

5 Conclusion

To address the critical challenge of "Cross-modal Conflicts” in mar-
itime HRI, as a proof of concept, we introduced a Multimodal Agen-
tic Framework functioning as a "Watchful Copilot” By integrating
a RAG-based reasoning core with active multi-turn human-agent
interaction and a Risk-Prioritized Interface, the system shows the
potential to bridge the gap between sensor data and linguistic in-
tent. Our key contribution lies in the application of Progressive
Disclosure: instead of operating as a "black box,” the agent visual-
izes its reasoning rationale, engaging the operator in an iterative
clarification loop. Initial validation (N = 13) confirms that this
mechanism shows preliminary promise in mitigating cognitive
overload and, crucially, fosters appropriate trust calibration by ex-
plicitly acknowledging system uncertainty. Limitations include the
abstracted 2D simulation, non professional participants, and pre-
determined scenarios, which bound generalizability to real-world
maritime operations.

Future work will focus on improving ecological validity by mov-
ing from the current simulated kinematic layer to raw perception
using Vision-Language Models (VLMs). While validated in maritime
contexts, the core framework—cross-modal conflict detection via
RAG and progressive disclosure for trust calibration—generalizes to
other safety-critical human-agent teams, including air traffic con-
trol, surgical robotics, and autonomous vehicle supervision, where
verbal coordination and physical behavior must align.
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