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Abstract
Cross-modal conflicts in maritime navigation—where a vessel’s 
verbal communication contradicts its physical maneuvers (e.g., 
promising to give way while maintaining speed) pose severe risks 
to safety. Current autonomous systems often process sensor data 
and linguistic inputs in isolation, failing to detect such discrepan­
cies. We present a Multimodal Agentic Framework that serves as a 
“Watchful Copilot,” using Retrieval-Augmented Generation (RAG) 
to cross-reference navigational dialogue with real-time kinematic 
data. To manage uncertainty, a Risk-Prioritized Interface employs 
progressive disclosure, escalating from a “Green” (Verified) state 
to a “Yellow” (Ambiguous) state, where the agent visualizes sup­
porting evidence and requests human supervision for clarification. 
Preliminary validation in a 2D simulation benchmark (𝑁 = 13) pro­
vides initial evidence that this human-in-the-loop workflow may 
support reduced cognitive load and appropriate trust calibration in 
high-ambiguity scenarios, warranting further investigation.

CCS Concepts
• Human-centered computing → Collaborative interaction; 
User interface design; • Computing methodologies → Intelligent 
agents; • Applied computing → Transportation.
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1 Introduction
As the maritime industry transitions toward Maritime Autonomous 
Surface Ships (MASS), the human operator’s role is fundamentally 
shifting from manual execution to supervisory control [12][14]. Al­
though automation now performs much of the trajectory planning, 
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Figure 1: Human-Agent Collaborative Maritime Copilot Framework.

maritime safety still depends heavily on nuanced social coordina­
tion and intent sharing between vessels [6][8][13]. Statistics from 
the IMO (International Maritime Organization) indicate that most 
maritime accidents are caused by human error and incorrect in­
terpretation of intentions during ship-to-ship negotiations [7]. In 
high-intensity maritime environments, operators encounter what 
we call “Cross-modal Conflicts”, situations where verbal intent 
communicated via VHF contradicts kinematic observations from 
sensors. Unlike traditional multimodal fusion approaches that as­
sume modality complementarity, our framework explicitly models 
the possibility of conflict, for instance, when a target vessel verbally 
declares a ’turn to port’ while radar continuously tracks a steady 
course. These discrepancies can arise from misunderstanding, de­
ception, or equipment failure, each demanding distinct operator 
responses. Resolving them typically requires manually integrating 
multiple data sources [4] [17], which can lead to cognitive over­
load and reduced situational awareness [10]. Resolving these con­
flicts is challenging because nautical communication is inherently 
ambiguous, creating potentially catastrophic risks in high-stakes 
situations [5] [16]. Context-dependent expressions often lack pre­
cise kinematic information, making reliance on Large Language 
Models (LLMs) alone insufficient for accurately inferring vessel 
intent [19] [9]. Moreover, current autonomous systems frequently 
treat sensing and communication separately, neglecting the crucial 
human component in mixed-traffic environments [2]. This opacity 
in system design where the agent acts as a ”black box” without 
verifying verbal agreements, significantly undermines the efficacy 
of Human-Agent Teaming (HAT) and operator trust [18] [15].
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In this paper, we propose a Multimodal Agentic Framework de­
signed to support human decision-making as a ”Watchful Copilot”. 
Unlike passive monitoring systems, our agent employs a RAG mech­
anism to actively cross-verify transcribed verbal intents against dy­
namic behavioral signals. Our core contribution is a Risk-Prioritized 
Interface that manages uncertainty through progressive disclosure: 
the system dynamically adjusts information granularity—escalat­
ing from a ”Green” (Verified) state to a ”Yellow” (Ambiguous) state, 
to facilitate multi-turn clarification under human supervision. We 
also introduce deceptive utterances to simulate challenging sce­
narios [3]. Preliminary results indicate that this approach helps 
align sensor data with linguistic intent, promoting calibrated trust 
in high-stakes maritime collaboration.

2 Methodology
The conceptual architecture of our Multimodal Agentic Framework 
is depicted in Figure 1. To address the challenge of cross-modal 
conflict, the system operates on a closed-loop workflow that verifies 
information through three interconnected stages: Simulated Per­
ception, Agentic Reasoning Core, and a Human-Agent Interaction 
Loop.

2.1 Simulated Perception and Knowledge 
Grounding

To isolate the effects of linguistic-behavioral discrepancies from 
environmental noise, we implement a Simulated Perception Layer 
in our 2D benchmark. Rather than processing raw visual inputs, the 
agent uses high-fidelity Kinematic State Vectors (position, velocity, 
heading) that represent the vessel’s physical state. This information 
is synchronized with Navigational Communication (transcribed 
VHF text). Reasoning relies on two complementary knowledge 
sources: a Dynamic Database of real-time objective data (Automatic 
Identification System (AIS) readings, relative geometry) and a static 
Maritime Knowledge Graph encoding regulatory constraints.

2.2 Agentic Reasoning Core via RAG
The central processing unit employs a RAG mechanism to bridge 
the gap between semantic intent and physical action. Specifically, 
the pipeline operates in three stages:

(i) Intent Extraction: An LLM (Google Gemini 3 pro) parser pro­
cesses transcribed VHF dialogue to extract structured navigational 
intent (e.g., action: alter_course, direction: starboard).

(ii) Knowledge Retrieval: The extracted intent triggers retrieval 
from two knowledge bases: (a) a Dynamic Database containing 
real-time objective facts fetched via APIs, including kinematic data 
of ships(AIS/visual estimates) and navigational status; and (b) Static 
Maritime Knowledge Graph: Contains encoded regulatory con­
straints, primarily the Convention on the International Regulations 
for Preventing Collisions at Sea (COLREGs) [1] and standard ma­
neuver patterns.

(iii) Grounded Generation: The LLM does not directly compute 
trajectories. Instead, it extracts estimated structured parameters 
(intended action, direction, magnitude) from the text, which are 
then passed to a deterministic kinematic model that generates the 
Ghost Trajectory using standard equations of motion. The LLM 
serves as a semantic parser, not a trajectory planner.

A Compliance & Consistency Check module compares this Ghost 
Trajectory against the actual vessel vector. An Ambiguity Quantifier 
calculates 𝑆𝑎𝑚𝑏 ∈ [0, 1] as: 𝑆𝑎𝑚𝑏 = 0.5 × 𝑉𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 0.5 × 𝐷𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐
(equal weighting was selected as a neutral prior for this formative 
validation phase)

where 𝑉𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 captures linguistic vagueness, reflecting the ab­
sence of precise action verbs or parameters in navigational dialogue 
and 𝐷𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 measures kinematic divergence, the geometric dis­
crepancy between the predicted Ghost Trajectory and the vessel’s 
real-time motion. State thresholds are defined as Green (𝑆𝑎𝑚𝑏 < 0.3), 
Yellow (0.3 − 0.7), and Red (> 0.7). We let 𝑉𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 be quantified 
via a LLM employing a few-shot prompting strategy, calibrated 
to output a scalar score ∈ [0, 1] based on the presence of specific 
actionable parameters such as action verb, value, reference) in the 
transcribed VHF message. We also let 𝐷𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 be computed as a 
time-averaged, normalized divergence between the observed vessel 
state vector S𝑎𝑐𝑡𝑢𝑎𝑙 and the predicted ghost state vector S𝑔ℎ𝑜𝑠𝑡 over 
a sliding window 𝑇. It is defined as the weighted sum of normalized 
heading divergence (𝑠𝜃) and speed divergence (𝑠𝑣):

𝐷𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 =
1
𝑁
∑
𝑡∈𝑇

[𝑤𝜃 ⋅min(
|Δ𝜃𝑡|
𝜃𝑚𝑎𝑥

, 1) + 𝑤𝑣 ⋅min(
|Δ𝑣𝑡|
𝑣𝑚𝑎𝑥

, 1)]

where N is the number of time steps in the sliding window T, Δ𝜃𝑡
and Δ𝑣𝑡 are instantaneous discrepancies, and 𝜃𝑚𝑎𝑥 and 𝑣𝑚𝑎𝑥 are 
empirically defined thresholds representing significant deviation.

2.3 Operational Workflow and Risk-Prioritized 
Interface

The workflow starts with continuous kinematic monitoring. When 
a potential collision risk is detected, the agent activates its Tiered 
Response Strategy, employing a Progressive Disclosure mech­
anism to manage operator trust and reduce cognitive load:

• Green (Verified):  When the verbal intent aligns with physi­
cal maneuvers and complies with COLREGs (low 𝑆𝑎𝑚𝑏), the 
system logs the event as ”Clear” without interrupting the 
operator.

• Yellow (Ambiguous - Supervisor-in-the-Loop):  If 𝑆𝑎𝑚𝑏 exceeds 
a moderate threshold (e.g., vague language like ”I will keep 
clear” or minor trajectory deviation), the interface highlights 
the target in yellow. Crucially, the agent visualizes the rea­
soning rationale (citing specific COLREGs as basis) and 
requests human authorization to initiate a specific clarifica­
tion query.

• Red (Conflicting):  In cases of critical cross-modal conflict 
(e.g., a verbal ”turn port” contradicted by a visual straight-
line vector) the agent escalates to a red alert and prepares 
an emergency query to resolve the immediate danger.

3 Experimental Design
Given that the proposed architecture is a highly coupled system 
integrating multi-turn human interaction, multimodal information 
processing, and RAG, it is important to verify system completeness 
and evaluate the interaction design prior to engaging professional 
human evaluators. A significant challenge in experimental design 
lies in the inherent ambiguity of COLREGs [1]. Concepts such as 
”safe distance” lack precise quantitative definitions, and scenario 
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Figure 2: Risk-Prioritized Interface: (left) Maritime chart with vessel positions; (middle) Real-time status and VHF log; (top-right) RAG 
evidence panel showing retrieved COLREGs and kinematic data; (bottom-right) Operator authorization controls.

classification is often equivocal; for instance, a Target Ship (TS) 
approaching from the port quarter could be interpreted as either 
a ”crossing” or an ”overtaking” situation. To rigorously assess the 
agent’s robustness in handling such multimodal ambiguity, we 
developed a simulation benchmark library comprising selected typ­
ical scenarios. This experiment employs a 2D planar simulation 
paradigm specifically to isolate environmental noise (e.g., wave dy­
namics and lighting conditions), thereby focusing the evaluation on 
the agent’s capability to cross-verify physical spatial relationships 
against semantic communication content (Figure 2).

Each experimental scenario is defined along two dimensions. 
Physical Situation specifies the encounter geometry and kinematic 
parameters based on COLREGs, while Communication Congruency
measures how well the preset VHF communication aligns with the 
actual physical situation, serving as the key independent variable.

(a) Crossing (b) Head-on (c) Overtaking

Figure 3: COLREGs-based classification of encounter situations. 
(Star symbol indicates the predicted point of collision.)

3.1 Physical Base Layer
We designed a set of physical scenarios covering the main COLREGs 
situations (Figure 3):

• Head-on Situation (1 scenario): Two vessels on reciprocal 
courses, creating a direct collision risk.

• Crossing Situations (2 scenarios): One case with the target 
vessel approaching from the port side (own ship is the stand-
on vessel) and one from the starboard side (own ship is the 
give-way vessel).

• Overtaking Situations (2 scenarios): One case where the own 
ship overtakes the target vessel and one where the target 
vessel overtakes the own ship.

Note: The number in parentheses indicates the number of distinct 
scenario instances created for each encounter type.

3.2 Communication & Congruency Layer
To evaluate the agent’s iterative clarification mechanism, we as­
signed specific VHF communication presets to each physical sce­
nario, defining three Ground Truth Conditions.

Condition A: Consistent/Clear (Expected State: Green) rep­
resents cases where communication is unambiguous and perfectly 
aligned with physical movements. For instance, in a high-risk star­
board crossing where the target ship is faster and should give way, 
the visual feed shows the target vessel clearly turning starboard, 
accompanied by the preset message, “Own ship is altering course to 
starboard to pass astern of you.” In such cases, the agent identifies 
low ambiguity and triggers no intervention.
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Condition B: Vague/Ambiguous (Expected State: Yellow)
captures situations where potential physical risk exists but com­
munication is non-specific and lacks actionable parameters. For 
example, in a port-side crossing with similar vessel speeds, the 
preset message, “I see you; will keep clear,” does not specify how 
the target ship will maneuver. Here, the agent detects semantic 
ambiguity and triggers a supervisory query.

Condition C: Conflicting/Discrepant (Expected State: Red)
involves scenarios where verbal statements directly contradict sen­
sor observations. In a head-on encounter with collision risk, the 
visual feed may show the target vessel maintaining a straight course 
despite a message stating, “We are altering course to starboard now 
for port-to-port passing.” In such cases, the agent identifies a critical 
cross-modal conflict and initiates an autonomous emergency query.

4 Results
We recruited 𝑁 = 13 participants (8 HRI researchers and 5 engi­
neering graduate students) to evaluate the 2D simulation prototype 
using a Think-Aloud protocol [11]. Participants assumed the role 
of Officer of the Watch (OOW), tasked with monitoring evolving 
traffic scenarios and authorizing agent interventions. We collected 
decision response times, behavioral logs, and qualitative feedback 
in Figure 4.

Figure 4: User experience comparison

Validation of Risk-Prioritized Disclosure:  The quantitative re­
sults show high median scores (≥ 6) for Interface Color Status (𝑄4) 
across both groups, validating that the Red-Yellow-Green transi­
tion effectively communicated risk levels. Behavioral observations 
indicated that the interface mitigated the ”startle effect” often seen 
in high-stakes alarms. Participants reported their immediate reac­
tion was to ”read the warning and see the suggestion” rather than 
panic, because the agent provided actionable context. However, the 
variance in initial reactions highlights a reliance solely on visual 
cues, with participants suggesting that ”adding sound may make it 
more alerting” for immediate awareness.

Trust Calibration via RAG Evidence:  A critical success of the 
framework is the establishment of trust through explainability. The 
”With Background” group showed remarkably high consensus on 
RAG Evidence (𝑄8), with the interquartile range collapsing around 
a score of 6. This indicates that HRI experts unanimously agreed 
on the value of structured dynamic/static evidence. We recorded 
an average decision response time of 4.5 seconds (𝑆𝐷 = 1.2) in the 

”Yellow” state. Behavioral observations confirmed this latency was 
not due to confusion, but to active cognitive verification: partic­
ipants utilized this window to cross-reference the RAG evidence 
against the map. This deliberation fostered trust, as noted by one 
participant: ”If it just turned green automatically, I might doubt it. 
But since it showed me the ambiguity and asked for my approval, I 
trust the final result much more.”

Interface Friction and Future Iteration:  While the workflow logic 
was validated, specific bottlenecks explain the wider variance ob­
served in expert ratings for Layout (𝑄5) and Control (𝑄6). Partic­
ipants noted that parsing textual COLREGs under pressure was 
cognitively demanding, suggesting that ”the font for important info 
could be larger” and VHF logs should be ”inversed” to show re­
cent messages first. Most critically, the confusion regarding manual 
input suggests a need to transition from text-based to graphical 
explainability. Future iterations will overlay a ”Ghost Trajectory” 
directly onto the map to facilitate rapid visual validation of the 
agent’s proposed maneuvers. 

5 Conclusion
To address the critical challenge of ”Cross-modal Conflicts” in mar­
itime HRI, as a proof of concept, we introduced a Multimodal Agen­
tic Framework functioning as a ”Watchful Copilot.” By integrating 
a RAG-based reasoning core with active multi-turn human-agent 
interaction and a Risk-Prioritized Interface, the system shows the 
potential to bridge the gap between sensor data and linguistic in­
tent. Our key contribution lies in the application of Progressive 
Disclosure: instead of operating as a ”black box,” the agent visual­
izes its reasoning rationale, engaging the operator in an iterative 
clarification loop. Initial validation (𝑁 = 13) confirms that this 
mechanism shows preliminary promise in mitigating cognitive 
overload and, crucially, fosters appropriate trust calibration by ex­
plicitly acknowledging system uncertainty. Limitations include the 
abstracted 2D simulation, non professional participants, and pre­
determined scenarios, which bound generalizability to real-world 
maritime operations.

Future work will focus on improving ecological validity by mov­
ing from the current simulated kinematic layer to raw perception 
using Vision-Language Models (VLMs). While validated in maritime 
contexts, the core framework—cross-modal conflict detection via 
RAG and progressive disclosure for trust calibration—generalizes to 
other safety-critical human-agent teams, including air traffic con­
trol, surgical robotics, and autonomous vehicle supervision, where 
verbal coordination and physical behavior must align. 

References
[1] 2022.  Convention on the International Regulations for Preventing Collisions 

at Sea, 1972 (COLREGs) - COLREGs Operator Guidance Framework. https:
//www.rasgateway.com.au/Code-of-Practice-COLREGS-framework.pdf.

[2] Anas S Alamoush and Aykut I Ölçer. 2025.  Maritime autonomous surface ships: 
architecture for autonomous navigation systems.  Journal of Marine Science and 
Engineering 13, 1 (2025), 122. doi:10.3390/jmse13010122

[3] Damien Anderson, Matthew Stephenson, Julian Togelius, Christoph Salge, John 
Levine, and Jochen Renz. 2018.  Deceptive Games. In Applications of Evolution­
ary Computation, Kevin Sim and Paul Kaufmann (Eds.). Springer International 
Publishing, Cham, 376–391. doi:10.1007/978-3-319-77538-8_26

[4] Erik Blasch, Tien Pham, Chee-Yee Chong, Wolfgang Koch, Henry Leung, Dave 
Braines, and Tarek Abdelzaher. 2021.  Machine learning/artificial intelligence for 
sensor data fusion–opportunities and challenges.  IEEE aerospace and electronic 
systems magazine 36, 7 (2021), 80–93. doi:MAES.2020.3049030

https://www.rasgateway.com.au/Code-of-Practice-COLREGS-framework.pdf
https://www.rasgateway.com.au/Code-of-Practice-COLREGS-framework.pdf
https://doi.org/10.3390/jmse13010122
https://doi.org/10.1007/978-3-319-77538-8_26
https://doi.org/MAES.2020.3049030


Active Maritime Copilot for Ambiguity and Risk-Driven Decisions HRI Companion ’26, March 16–19, 2026, Edinburgh, Scotland, UK

[5] PA Carson and CJ Mumford. 2011.  Communication failure and loss prevention. 
Loss Prevention Bulletin 218 (2011). 

[6] Christine Chauvin. 2011.  Human factors and maritime safety.  The Journal of 
Navigation 64, 4 (2011), 625–632. doi:10.1016/j.trpro.2019.07.183

[7] Christine Chauvin, Salim Lardjane, Gaël Morel, Jean-Pierre Clostermann, and 
Benoît Langard. 2013.  Human and organisational factors in maritime accidents: 
Analysis of collisions at sea using the HFACS.  Accident Analysis & Prevention 59 
(2013), 26–37. doi:10.1016/j.aap.2013.05.006

[8] Linda de Vries. 2017.  Work as done? Understanding the practice of sociotechnical 
work in the maritime domain.  Journal of Cognitive Engineering and Decision 
Making 11, 3 (2017), 270–295. doi:10.1177/1555343417707664

[9] George Gabedava and Yanming Hu. 2025.  Enhancing maritime safety through 
linguistic analysis: a case study of communication failures in maritime accidents. 
WMU Journal of Maritime Affairs (2025), 1–15. doi:10.1007/s13437-025-00371-y

[10] Nermin Hasanspahić, Srđan Vujičić, Vlado Frančić, and Leo Čampara. 2021.  The 
role of the human factor in marine accidents.  Journal of Marine Science and 
Engineering 9, 3 (2021), 261. doi:10.3390/jmse9030261

[11] C. H. Lewis. 1982.  Using the “Thinking Aloud” Method in Cognitive Interface Design. 
Technical Report RC-9265. IBM. 

[12] M Nardo, Daniel Forino, and Teresa Murino. 2020.  The evolution of man–machine 
interaction: The role of human in Industry 4.0 paradigm.  Production & manufac­
turing research 8, 1 (2020), 20–34. doi:10.1080/21693277.2020.1737592

[13] Zhegong Shangguan, Yang Liu, Le Song, Tingcheng Li, and Adriana Tapus. 2024. 
Using a Pneumatic Tactile Steering Wheel to Enhance the Multi-Modal Takeover 

Request In Smart Vehicle. In International Conference on Social Robotics. Springer, 
122–132. doi:10.1007/978-981-97-8963-4_12

[14] Thomas B Sheridan. 2021.  Human supervisory control of automation.  Handbook 
of human factors and ergonomics (2021), 736–760. doi:10.1002/9781119636113.ch28

[15] Donghee Shin. 2021.  The effects of explainability and causability on perception, 
trust, and acceptance: Implications for explainable AI.  International journal of 
human-computer studies 146 (2021), 102551. doi:10.1016/j.ijhcs.2020.102551

[16] Ana Lucia Tavares Monteiro. 2019.  Reconsidering the measurement of proficiency 
in pilot and air traffic controller radiotelephony communication: From construct 
definition to task design.  Ph. D. Dissertation. Carleton University. 

[17] Simon M Taylor and Marc De Leeuw. 2021.  Guidance systems: from autonomous 
directives to legal sensor-bilities.  Ai & Society 36, 2 (2021), 521–534. doi:10.1007/
s00146-020-01012-z

[18] Jonas Wanner, Lukas-Valentin Herm, Kai Heinrich, and Christian Janiesch. 2022. 
The effect of transparency and trust on intelligent system acceptance: Evidence 
from a user-based study.  Electronic Markets 32, 4 (2022), 2079–2102. doi:10.1007/
s12525-022-00593-5

[19] Jingbo Yin, Rafi Ullah Khan, Muhammad Afzaal, Hamed M. Almalki, Mo­
hamad Ahmad Saleem Khasawneh, and Saleh Al Sulaie. 2025.  Quantitative risk 
assessment of speech acts and lexical factors in maritime communication failures 
and accidents.  Safety Science 191 (2025), 106968. doi:10.1016/j.ssci.2025.106968

Received 2025-12-08; accepted 2026-01-12

https://doi.org/10.1016/j.trpro.2019.07.183
https://doi.org/10.1016/j.aap.2013.05.006
https://doi.org/10.1177/1555343417707664
https://doi.org/10.1007/s13437-025-00371-y
https://doi.org/10.3390/jmse9030261
https://doi.org/10.1080/21693277.2020.1737592
https://doi.org/10.1007/978-981-97-8963-4_12
https://doi.org/10.1002/9781119636113.ch28
https://doi.org/10.1016/j.ijhcs.2020.102551
https://doi.org/10.1007/s00146-020-01012-z
https://doi.org/10.1007/s00146-020-01012-z
https://doi.org/10.1007/s12525-022-00593-5
https://doi.org/10.1007/s12525-022-00593-5
https://doi.org/10.1016/j.ssci.2025.106968

	Abstract
	1 Introduction
	2 Methodology
	2.1 Simulated Perception and Knowledge Grounding
	2.2 Agentic Reasoning Core via RAG
	2.3 Operational Workflow and Risk-Prioritized Interface

	3 Experimental Design
	3.1 Physical Base Layer
	3.2 Communication & Congruency Layer

	4 Results
	5 Conclusion
	References

